| General Response
Action | Remedial
Technology | Process Option ⁽²⁾ | Preliminary Screenir Description I | ng of Rem
Retained | edial Technologies Retained/Rationale | Eff | Remedi
ectiveness Evaluation | | nd Process Options Screening C
mentability Evaluation | riteria | Cost Evaluation | | Retained | |----------------------------|-------------------------------|--|---|-----------------------|---|----------|--|---------------|---|--------------|--|-----|--| | No Action | No Action | No Action | No Remedial Action | Yes | As required by NCP and USEPA as a baseline for other process | Low | Does not result in a decreased residual risk; baseline conditions | High | Readily implementable | Low | Capital - None
O&M - Low (for monitoring) | Yes | As required by NCP and USEPA as
a baseline for other process
Standard practice for | | Monitoring | Monitoring | Monitor containment technologies/cover integrity | Monitoring of containment technologies/cover integrity | Yes | To supplement containment technologies/cover integrity | High | Effective to evaluate other technologies (e.g., containment) and ensure the technologies are functioning properly | High | Readily implementable | Low-Moderate | Capital - Low
O&M - Low to Moderate | Yes | containment and capping technologies; implemented with other containment options | | Institutional
Controls | Institutional
Controls | Proprietary Controls,
Enforcement Tools, Deed
Restrictions, and Information
Devices | Administrative actions taken to minimize the potential for human exposure to constituents present by controlling land use and guiding human behavior. | Yes | Discourage non-applicable land use by imposing site restrictions and providing notification of constituents in media. | High | Effective in limiting future Site use; five-year review process ensures long-term effectiveness | Moderate/High | New Jersey has regulatory process for establishing land use restrictions; Requires coordination with property owner and regulatory authorities | Low | Capital - Low
O&M - Low | Yes | Standard practice for landfill
management; may be
implemented with additional
process options | | Access Restrictions | Access Restrictions | Physical Barriers, Signage, and
Security | Using physical barriers, signage,
and security to prevent or
discourage entry | Yes | To be used in conjunction with other remedial technologies | Moderate | Effectiveness may require
monitoring
Prevents direct contact with | High | Readily implementable | Low/Moderate | Capital - Low to moderate
O&M - Low to moderate | Yes | Standard practice for landfill
management; implemented with
additional process options | | Containment | Soil Capping | Asphalt Cover | Prevent infiltration and direct contact with surface soil constituents. | Yes | Impermeable barrier that prevents contact with surface soil constituents and reduces infiltration. | Moderate | contaminated soils and debris. Requires clearing of Site vegetation/destruction of nabitat and placement of asphalt. Long- term success dependent on | Moderate | Standard technology but
implementability reduced by
limited truck access to site.
Typically used in developed areas
(e.g., parking lots). | Moderate | Capital - Moderate
O&M - Moderate | No | Other low permeability covers offer same effectiveness and implementability at lower cost; no habitat will remain in asphaltpaved areas. | | | | Vegetative Cover | Prevent direct contact with a vegetative cover. | Yes | Prevents direct contact with surface soil constituents and reduces erosion and transport of constituents. | Moderate | maintenance of cover
Prevents direct contact with
contaminated soils and debris.
Requires clearing of Site
vegetation/destruction of habitat
and placement of clean soil. Long
term success dependent on
maintenance of cover | | Standard technology but implementability reduced by limited truck access to site. | Low/Moderate | Capital - Moderate
O&M - Low | Yes | Standard containment process option; can be applied to portions of the site. | | | | Low-permeable Cover | Minimize infiltration and prevent direct contact. | Yes | Prevents direct contact with surface soil constituents and reduces infiltration. | Moderate | Prevents direct contact with contaminated soils and debris. Requires clearing of Site vegetation/destruction of habitat and placement of clean soil. Long term success dependent on maintenance of cover. | Moderate | Standard technology but
implementability reduced by
limited truck access to site. | Moderate | Capital - Moderate
O&M - Low | Yes | Standard containment process option; can be applied to portions of the site. | | | Subsurface Source
Controls | Low-permeable Liner | Minimize infiltration/leaching into subsurface | Yes | Reduces infiltration/leaching into subsurface | High | Minimizes infiltration of leachate
into subsurface; may be used in
areas where waste has been
relocated | Low | Standard construction equipment
but may be limited by site
conditions in some areas of the
site and total volume of impacted
material | High | Capital - High
O&M - Low to Moderate | Yes | Standard containment process option; can be applied to portions of the site. | | General Response
Action | Remedial
Technology | Process Option ⁽²⁾ | Preliminary Screening of Ren
Description Retained | nedial Technologies Retained/Rationale | Eff | Remedia
ectiveness Evaluation | | nd Process Options Screening C
mentability Evaluation | riteria | Cost Evaluation | | Retained | |--|--|---|--|---|----------|---|--------------|---|------------------|---|-------|---| | | | Cementation
Solidification/Stabilization | Use cementitious material (or
similar) to immobilize Yes
constituents. | Immobilizes constituents thereby reducing concerns associated with direct contact and infiltration | Low | Constituents are incorporated into a dense structure that reduces mobility, limited effectiveness for VOCs, SVOCs, PAHs, and pesticides | Low | Standard construction equipment
but may be limited by site
conditions (presence of municipa
waste) and would require
significant mixing of additives | 6
0
0
0 | Capital - High
O&M - Low to None | No No | Implementability reduced by presence of municipal waste in soil. Unlikely to have degree of mixing and contact of cementitious material and soil needed to bind constituents. | | | | Oxidation/Reduction | Chemically transform hazardous constituents to non-hazardous or Yes less toxic constituents | Stabilizes, immobilizes or makes inert constituents thereby reducing concerns associated with direct contact and infiltration | Moderate | Treats inorganics; less effective for some VOCs, SVOCs, and pesticides | Moderate | Potentially requires handling of large quantities of hazardous oxidizing chemicals, appropriate training, and treatability studies | Moderate | Capital - Moderate
O&M - Moderate | Yes | Weil-established technology for preventing mobilization of constituents; may be implemented with additional process options Less effective than other | | | Physical/Chemical | Precipitation/Co-precipitation | Convert soluble constituents into insoluble solids for precipitation Yes and removal | Reduces infiltration/leaching into subsurface | Low | Not applicable to majority of constituents present; constituents remain in soil | Low | Not readily deployable to soil
mixed with waste | Low/Moderate | Capital - Moderate
O&M - Low to None | No | immobilization/containment
options; requires additional
containment to control direct
contact | | In-Situ Treatment | nonnennennennennen og en | Soil Vapor Extraction | Vacuum applied to extraction wells to facilitate volatilization of groundwater constituents such as VOCs | Combined with other technologies for enhancing constituent extraction and ex-situ treatment | Low | Removes VOCs from the
subsurface for ex-situ treatment;
effectiveness is low in areas
where VOC concentrations are
low. | Low/Moderate | Potential limitations due to presence of waste (installation of wells and piping is difficult; heterogeneity not favorable to uniform air flow in the Debris in media likely to cause | 9 | Capital - Moderate
(well installation and equipment)
O&M - Low to Moderate | No | Unlikely to be effective given the low VOC concentrations at the site, and difficult to implement due to presence of waste. | | | | Thermal Treatment | Application of heat through various methods increases volatilization of SVOCs to facilitate extraction | Removes constituents for ex-situ
treatment | Moderate | Treats some constituents (VOCs, SVOCs, pesticides); requires additional air stream treatment | Low | operating difficulties and
potentially safety issues;
extraction rates varies; high
moisture content limits
effectiveness; power needs can | Moderate/High | Capital - Moderate to High
(no adequate exisiting power
available for most of site)
O&M - Moderate | No No | Implementability reduced by presence of municipal waste in soil. Costs potentially high. | | THE STATE OF S | | Bioventing | Oxygen is delivered to soil to No facilitate biodegradation | Not established technology to treat many constituents present | - | | - | he hieh
- | - | - | - | - | | | Biological | Enhanced Bioremediation | Water-based solutions circulated through media to stimulate No natural microbial activity | Not established technology to treat many constituents present | - | - | - | - | - | - | - | - | | | | Phytoremediation | Plants used to remove, stabilize,
or destroy constituents | Removes or immobilizes constituents thereby reducing concerns associated with direct contact and infiltration | Moderate | Effective for some constituents,
but not all (e.g. PCBs); does not
prevent direct contact without
other process options | High | Readily implementable | Low/Moderate | Capital - Moderate
O&M - Low | Yes | Can be combined with other process options to provide treatment of constituents present | | General Response | | Process Option ⁽²⁾ | Preliminary Scree | ning of Reme | dial Technologies | | | | nd Process Options Screening Cr | | | | Retained | |-------------------|-------------------|-----------------------------------|--|--------------|--|----------|--|--------------|--|--------------|--|-----|---| | Action | Technology | | Description | Retained | Retained/Rationale | Effe | ectiveness Evaluation | Imple | mentability Evaluation | | Cost Evaluation | | | | | | Biopiles | Soils are excavated, mixed with
amendments, and actively
aerated to remove volatile
Soils are excavated, placed in | Yes | Removes constituents for ex-situ treatment | Moderate | Treats some constituents (VOCs,
SVOCs, pesticides); requires
additional air stream treatment
Does not treat inorganics; volatile | Low | Implementability reduced by presence of waste mixed in soil | Moderate | Capital - Moderate
O&M - Moderate | No | Longer treatment times than other ex-situ biological treatments. No feasible for volume of soil, and | | | Biological | Landfarming | containment and tilled to remove volatile constituents | Yes | Removes constituents for ex-situ
treatment | Low | constituents require pretreatment | Low | Requires large area | Moderate | Capital - Moderate
O&M - Moderate | No | number of constituents requiring treatment | | | | Siurry Phase Biological Treatment | Soils are mixed with water and admixtures to facilitate blodegradation | Yes | Removes constituents from impacted soil | High | Effective treatment for majority of constituents present | Low | Implementability reduced by presence of waste mixed in soil; dewatering and disposal of treated material and wastewater | High | Capital - High
O&M - High | No | Offers minimal benefit to off-site disposal | | | Physical/Chemical | Chemical Extraction | Excavated soil is mixed with
chemical extractant to dissolve
constituents, which are then
separated from extractant | Yes | Removes constituents from impacted soil | Moderate | Effective for some constituents
(i.e., PCBs, VOCs, pesticides) | Low | treated material and wastewater. May not be implementable for potential large volume of soil requiring treatment; presence of municipal waste will reduce make mixing/contact very difficult. Reactions between waste and | High | Capital - High
O&M - Low to Moderate | No | Presence of waste reduces implementability of this technology | | Ex-Situ Treatment | | Chemical Reduction/Oxidation | Chemically transform hazardous constituents to non-hazardous or less toxic constituents | Yes | Stabilizes, immobilizes or makes
inert constituents thereby
reducing concerns associated
with direct contact and infiltration | Moderate | Treats inorganics; less effective for some VOCs, SVOCs, and pesticides | Low | chemicals cannot be predicted
May not be implementable for
potential large volume of soil
requiring treatment; presence of
municipal waste will reduce make
mixing/contact very difficult.
Reactions between waste and | Moderate | Capital - Moderate
O&M - Moderate | No | Presence of waste reduces implementability of this technology | | | | Separation | Constituents concentrated by physically or chemically separating constituents from the medium | Yes | Removes constituents from impacted soil | Moderate | Applicable to some constituents present (i.e., VOCs, SVOCs, pesticides and inorganics) | Low | chemicals cannot be acedicted May not be implementable for potential large volume of soil requiring treatment; presence of municipal waste will reduce make mixing and separation very Not likely implementable for large | Moderate | Capital - Moderate
O&M - Low/moderate | No | Presence of waste reduces implementability of this technology | | | | Solidification/Stabilization | Stabilizing agents added to excavated soil to physically bind or enclose constituents in a mass | Yes | Immobilizes constituents thereby reducing concerns associated with direct contact and infiltration | Low | Applicable to inorganics; low effectiveness with pesticides and organics | Low | Not likely implementable for large
volumes as treatment increases
volume further; presence of
waste makes mixing and contact
more difficult | Low/Moderate | Capital - Moderate
O&M - Low | No | Not feasible for volume of soil requiring treatment | | Removal | Excavation | Excavation | Physically remove impacted soil | Yes | Well established technology for removing impacted soil. | High | Requires clearing of site vegetation and destruction of habitat. Removal of constituents from site reduces toxicity and volume of constituents | Low/Moderate | Standard construction equipment, | High | Capital - High
O&M - Low to None | Yes | Standard process option
applicable to all constituents;
implemented in conjunction with
disposal | | General Response
Action | Remedial
Technology | Pracess Option | n ⁽²⁾ | Preliminary Screeni Description | ng of Rem
Retained | edial Technologies Retained/Rationale | Effe | Remedia
ectiveness Evaluation | | nd Process Options Screening Co | riteria | Cost Evaluation | | Retained | |----------------------------|------------------------|--------------------|------------------|--|-----------------------|--|---------------|--|---------------|--|---------------------------------|---|-----|---| | | | Off-Site Landfil | īll | Off-site disposal of excavated soil
at an approved landfill | Yes | Well established technology for disposal of impacted soil | Moderate/High | Removal of constituents from site
reduces toxicity and volume of
constituents | Moderate | Standard construction equipment, but characterization required to find appropriate disposal facility; potentially difficult to find a facility that can receive such a large volume of impacted material; implementability reduced by limited truck access to site | Moderate/High | Capital - Dependent on volume
and waste characterization
(hazardous/non-hazardous)
O&M - Low to None | Yes | Standard disposal method
applicable to all constituents | | Disposal/Discharge | Disposal | Off-Site Incinerat | tion | Incineration of excavated soil or remedial process residuals in an approved incineration facility. | Yes | Technology is applicable for most
site constituents except
inorganics, which would require
disposal. | Moderate/High | Removal of constituents from site
reduces toxicity and volume of
constituents | Moderate | Standard construction equipment,
but characterization required to
find appropriate disposal facility;
implementability reduced by
limited truck access to site | 0
0
0
0
0
0
0 | Capital - Dependent on volume
and waste characterization
(hazardous/non-hazardous)
O&M - Low to None | No | Technology is not applicable for inorganics, which would still require off-site disposal. Therefore, incineration offers no benefit over simple off-site disposal. | | | | On-Site Consolida | ation | Excavate and relocate soil on-site for further, long-term management (e.g., containment). | Yes | Well-established technology for management of impacted soil | Moderate | Reduction of extent/area of impacted material; may be combined with other soil treatment or containment technologies | Moderate/High | Standard construction equipment; liner may be required under impacted materials to prevent migration of constituents to groundwater | Moderate | Capital - High
O&M - Low to None | Yes | Standard, proven disposal
method; implemented with
containment | | | | Backfilling Excava | ation | Backfilling with clean fill | Yes | Well-established technology for restoring excavated area; combine with excavation or other disposal technologies | Moderate | May be combined with other soil
treatment or containment
technologies | Low/Moderate | Potentially unfeasible due to site | Moderate | Capital - Moderate
(soil sampling and handling)
O&M - Low to None | Yes | Less feasible than other disposal options | | | | Soil Reuse | | Reuse of treated soils as fill or cover material in a landfill | No | Ex-situ treatments required to allow soil reuse are not applicable to the site because material is a mixture of waste and soil | - | - | - | - | - | - | - | - | Notes ⁽¹⁾ Per USEPA's Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, October 1988. ⁽²⁾ Remedial Technology/Process Options list developed from Tables 4 and 5 of Rolling Knolls Landfill Superfund Site Technical Memorandum on Candidate Technologies.